J'utilise toujours "pdfgrep" pour rechercher dans plusieurs fichiers PDF à partir de la ligne de commande. Mais j'ai rencontré un problème :ce caractère de ligature "fi" (voir https://www.compart.com/en/unicode/U+FB01).
"fi" est dans le mot "fixe", donc je n'ai pas pu rechercher le terme "opérateur de point fixe" avec pdfgrep -iR 'fixed point operator'
. Cependant, lorsque j'ouvre le fichier avec des lecteurs PDF tels que Foxit Reader et Evince, "fi" est divisé en "f" et "i", donc consultable. Existe-t-il une alternative plus fiable pour le "pdfgrep" ? Ou existe-t-il des mots-clés d'option dans "pdfgrep" pour étendre l'encodage ?
Le fichier PDF est http://direct.mit.edu/books/chapter-pdf/238450/9780262321037_can.pdf .
Ubuntu 20.04, amd64, version du noyau Linux 5.6.0-1018-oem. pdfgrep a une option --unac
. Mais si j'installe pdfgrep avec sudo apt-get install pdfgrep
, commande --unac
affichera "pdfgrep :prise en charge UNAC désactivée au moment de la compilation !"
pdfgrep:
Installed: 2.1.2-1build1
Candidate: 2.1.2-1build1
Version table:
*** 2.1.2-1build1 500
500 http://mirrors.huaweicloud.com/ubuntu focal/universe amd64 Packages
100 /var/lib/dpkg/status
Réponse acceptée :
Pour résoudre ce problème, vous devez d'abord utiliser pdftotext
pour savoir à quoi ressemble votre ligature sous forme d'UTF-8, par exemple je lance ceci :
pdftotext -f 11 -l 13 ~/Mathematics/Analysis/MeasureTheory.pdf text && cat text
et obtenir une ligne de résultats ressemble à ceci
1.6. Infinite and σ-finite measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
alors je sais fi
est en fait un téléphone à sonnerie ☎ dans le terminal, cependant il s'affiche sous la forme fi
sur le navigateur.
Donc je continue avec pdfgrep
pdfgrep --page-range=11-13 fi ~/Mathematics/Analysis/MeasureTheory.pdf
Enfin, bien sûr, j'obtiens les résultats souhaités :
1.6. Infinite and σ-finite measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4. The general definition of the Lebesgue integral . . . . . . . . . . . . . . 118
2.6. Integration with respect to infinite measures . . . . . . . . . . . . . . . . 124
3.5. Infinite products of measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187